Activités numériques

1. Fractions

■ PROPRIÉTÉS : (admises)

Soient a, c dans \mathbb{R} et b, d dans \mathbb{R}^* .

$$\bullet \ \frac{a}{b} + \frac{c}{d} = \dots$$

•
$$\frac{a}{b} - \frac{c}{d} = \dots$$

•
$$\frac{a}{b} \times \frac{c}{d} = \dots$$

$$\bullet \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \dots$$

Exercice 1

Écrire sous la forme d'une fraction irréductible :

$$A = \frac{7}{9} - \frac{1}{9} \times \frac{3}{2}$$
 $B = \left(\frac{2}{3}\right)^2 - \frac{3}{2}$

$$C = \frac{A}{B} + \frac{11}{19}$$

Exercice 2

Écrire sous la forme d'une fraction irréductible :

$$A = \frac{9}{8} - \frac{\frac{7}{6}}{\frac{6}{5}} + \frac{4}{\frac{3}{2}}$$

$$B = \frac{1}{2 - \frac{1}{3 - \frac{1}{4 - \frac{1}{5}}}}$$

$$C = \frac{1248}{7259} \times \frac{A}{B}$$

En allemand...

- der Bruch
- die Bruchzahl
- das Bruchzeichen
- der Zähler
- der Nenner

2. Puissances

■ PROPRIÉTÉS : (admises)

Soit $a \in \mathbb{R}^*$. Soient n et p dans \mathbb{Z} .

- -----
- •
- •

■ PROPRIÉTÉS : (admises)

Soient a et b dans \mathbb{R}^* . Soit $n \in \mathbb{Z}$.

- •
- •

■ PROPRIÉTÉS : (admises)

Soit $a \in \mathbb{R}^*$. Soit $n \in \mathbb{Z}$.

- •
- •

Exercice 3

Écrire sous la forme d'une fraction irréductible : $A = \frac{(10^{-3})^5 \times 10^8}{5 \times 10^{-6}}$

$$B = \frac{189}{2(-5)^{-2} - 5(-2)^{-5}}$$

Exercice 4

Soit, pour $n \in \mathbb{N}$, $B(n) = \frac{9^{n+1} + 9^n}{3^{2n+1} - 3^{2n}}$

- 1. Calculer B(0), B(1), B(2) et B(3). Que remarque-t-on?
- 2. Démontrer que, pour tout $n \in \mathbb{N}$,

$$B\left(n\right) = 5$$

En allemand...

- die Potenz
- élever à une puissance : potenzieren

3. Racines carrées

■ PROPRIÉTÉS : (admises)

Soient a et b dans $[0; +\infty[$.

Attention

En général,

 $\sqrt{a+b}$ est différent de $\sqrt{a}+\sqrt{b}$

★Exercice 5

Écrire sous la forme la plus simple possible.

$$A = \frac{8 + 2\sqrt{28} - \sqrt{252}}{3 + 2\sqrt{63} - \sqrt{343}}$$

$$B = \frac{\frac{1}{\sqrt{3}} - \frac{\frac{1}{\sqrt{3}}}{\sqrt{11}}}{\frac{1}{\sqrt{33}}}$$

Exercice 6

Écrire sous la forme $a\sqrt{b}$, avec $a \in \mathbb{N}$ et b un entier naturel le plus petit possible.

$$A = 2\sqrt{8} - 3\sqrt{32} + 2\sqrt{98}$$

$$A' = 3\sqrt{1183} - \sqrt{3703} - 2\sqrt{11767}$$

$$B = 3\sqrt{5} \times 5\sqrt{2} \times 2\sqrt{15}$$

$$B' = 4\sqrt{7} \times 11\sqrt{14}5\sqrt{6}$$

Exercice 7

Écrire sans racine carrée au dénominateur :

$$A = \frac{1}{\sqrt{5}}$$

$$A = \frac{1}{\sqrt{5}} \qquad \qquad B = \frac{4}{3 - \sqrt{5}}$$

$$A' = \frac{15\sqrt{2}}{\sqrt{5}}$$

$$A' = \frac{15\sqrt{2}}{\sqrt{5}} \qquad B' = \frac{44}{3\sqrt{5} + 1}$$

■ DÉFINITION : Quantité conjuguée

Si $a \in \mathbb{R}$ et $b \in \mathbb{R}$, on dit que a - b est la

de a+b.

De même, a+b est la quantité conjuguée de a-b.

Exercice 8

Calculer:

$$A = \left(\frac{\sqrt{17 - 2\sqrt{7}}}{5}\right)^2 + \left(\frac{1 + \sqrt{7}}{5}\right)^2$$

$$B = \left(\sqrt{11 + 4\sqrt{7}} - \sqrt{11 - 4\sqrt{7}}\right)^2$$

$$C = \left(\sqrt{37 - 12\sqrt{7}} - \sqrt{37 + 12\sqrt{7}}\right)^2$$

En déduire la valeur de

$$\sqrt{37 - 12\sqrt{7}} - \sqrt{37 + 12\sqrt{7}}$$

Exercice 9

On donne $\varphi = \frac{1+\sqrt{5}}{2}$. Ce nombre s'appelle le **nombre d'or** et a des propriétés bien particulières.

- 1. Montrer que $\varphi^2 = \varphi + 1$
- 2. Calculer en une seule étape :

$$A = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \varphi}}}}$$

En allemand...

- die Quadratwurzel
- Comment dit-on quantité conjuguée?