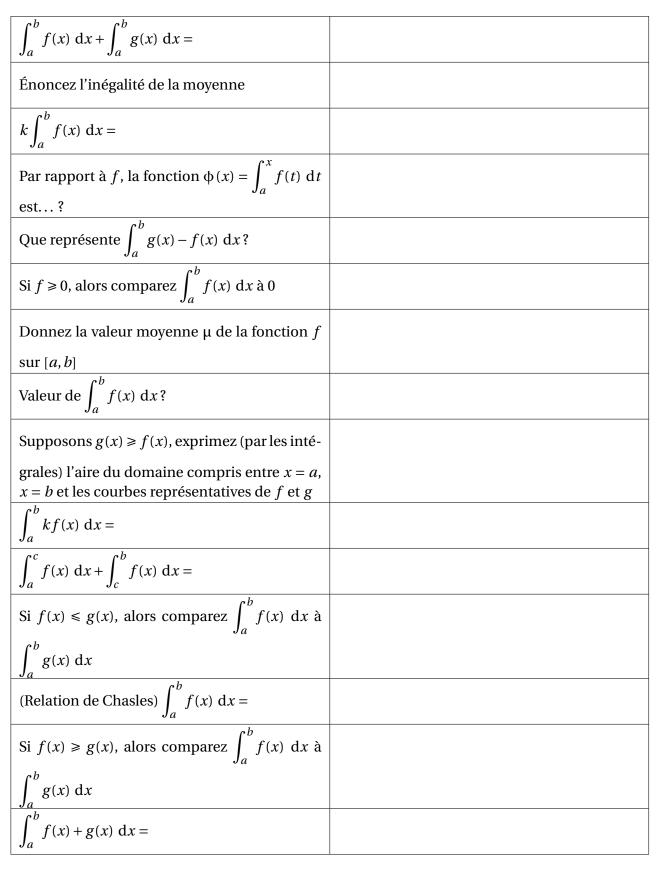
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Valeur de $\int_a^b f(x) dx$?	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
Énoncez l'inégalité de la moyenne	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Par rapport à f, la fonction $\phi(x) = \int_a^x f(t) dt$	
est?	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	

Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ge 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Valeur de $\int_a^b f(x) dx$?	F(b) - F(a)
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
	Si f est une fonction continue sur $[a,b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_{-b}^{b} f(x) dx \le M(b-a)$
Cp	$\int_{a}^{b} f(x) \mathrm{d}x \le \mathrm{M}(b-a)$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$ est?	L'unique primitive de f qui s'annule en a
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} kf(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$

Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Par rapport à f, la fonction $\phi(x) = \int_{a}^{x} f(t) dt$	L'unique primitive de f qui s'annule en a
est? $k \int_{a}^{b} f(x) dx =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$

$k \int_{a}^{b} f(x) \mathrm{d}x =$	
$\int_{a}^{b} kf(x) \mathrm{d}x =$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$	
est?	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
Définition de $\int_{a}^{b} f(x) dx$?	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx a 0$	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	

$\int_{a}^{b} k f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
L'unique primitive de f qui s'annule en a
En unités d'aire (u.a.)
$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
C'est l'aire sous la courbe entre l'axe des abs- cisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$-\int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$



$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) dx \le M(b-a)$ $\int_{a}^{b} kf(x) dx$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
sur $[a, b]$ Valeur de $\int_a^b f(x) dx$?	F(b) - F(a)
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$

Définition de $\int_a^b f(x) dx$?	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Énoncez l'inégalité de la moyenne	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Par rapport à f, la fonction $\phi(x) = \int_a^x f(t) dt$	
est?	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	

Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$

Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) dx \le M(b-a)$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
$\int g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} kf(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)

Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
Définition de $\int_a^b f(x) dx$?	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
Énoncez l'inégalité de la moyenne	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	

Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$,
$\int_{a}^{a} g(x) f(x) dx$	x = b et les courbes représentatives de f et de g
$\int_{a}^{b} c(x) dx$	C'est l'aire sous la courbe entre l'axe des abs-
Définition de $\int_{a}^{b} f(x) dx$?	cisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
$\int_{a}^{a} \int_{a}^{b} (x) dx$	
	Si f est une fonction continue sur $[a,b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le M$
	$\int_{a}^{b} f(x) \mathrm{d}x \leq \mathrm{M}(b-a)$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ge 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_a^b f(x) \mathrm{d}x$

Énoncez l'inégalité de la moyenne	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
Définition de $\int_{a}^{b} f(x) dx$?	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
Unité d'expression de la valeur de	
$\int_a^b f(x) \mathrm{d}x?$	
$\int_{a}^{b} f(x) dx?$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	
Valeur de $\int_{a}^{b} f(x) dx$?	
$\int_{a}^{b} f(x) \mathrm{d}x =$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	

Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
Que représente $\int_a^b g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$

Définition de $\int_a^b f(x) dx$?	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Donnez la valeur moyenne μ de la fonction f	
$\operatorname{sur}\left[a,b\right]$	
Valeur de $\int_a^b f(x) dx$?	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Énoncez l'inégalité de la moyenne	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	

Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_a^b f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
	Si f est une fonction continue sur $[a,b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$

Définition de $\int_a^b f(x) dx$?	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
$\frac{\int_{a}^{b} f(x) dx?}{\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =}$	
Donnez la valeur moyenne μ de la fonction f	
$\operatorname{sur}\left[a,b\right]$	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Valeur de $\int_a^b f(x) dx$?	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	

Définition de $\int_{a}^{b} f(x) dx$? $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx =$ Unité d'expression de la valeur de	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$ $\int_a^b f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) dx?$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	En unités d'aire (u.a.) $\int_{a}^{b} f(x) + g(x) dx$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$

(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_a^b f(x) \mathrm{d}x$
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) \mathrm{d}x \le M(b-a)$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} kf(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$

Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$

Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
$\int_{a}^{b} f(x) dx?$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
Définition de $\int_{a}^{b} f(x) dx$?	
Que représente $\int_a^b g(x) - f(x) dx$?	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Énoncez l'inégalité de la moyenne	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	

	$\int_{a}^{b} c(x) dx$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Unité d'expression de la valeur de	
$\int_a^b f(x) \mathrm{d}x?$	En unités d'aire (u.a.)
$\int_{a}^{b} f(x) dx?$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Γ_p	C'est l'aire sous la courbe entre l'axe des abs-
Définition de $\int_{a}^{b} f(x) dx$?	cisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
C b	C'est l'aire du domaine compris entre $x = a$,
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	x = b et les courbes représentatives de f et de g
Inversion des bornes de l'intégrale :	c^b
$\int_{b}^{a} f(x) \mathrm{d}x =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	$oldsymbol{c}^b$
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} g(x) \mathrm{d}x$	Ja Ja
	Si f est une fonction continue sur $[a,b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le f^b$
L	$\int_{a}^{b} f(x) \mathrm{d}x \le \mathrm{M}(b-a)$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$

Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
Énoncez l'inégalité de la moyenne	
Valeur de $\int_a^b f(x) dx$?	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	
$\int_{a}^{b} f(x) dx?$ $\int_{a}^{a} f(x) dx =$	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$	
est?	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	

Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} kf(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Valeur de $\int_a^b f(x) dx$?	F(b) - F(a)
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$

Valeur de $\int_a^b f(x) dx$?	
$\int_{a}^{b} kf(x) \mathrm{d}x =$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
Énoncez l'inégalité de la moyenne	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
Définition de $\int_a^b f(x) dx$?	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	

Valeur de $\int_a^b f(x) dx$?	F(b) - F(a)
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Inversion des bornes de l'intégrale : $\int_{h}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$

Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Définition de $\int_{a}^{b} f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ge 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
	Si f est une fonction continue sur $[a, b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a, b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx =$	$\int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_a^b f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$

$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
Énoncez l'inégalité de la moyenne	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Valeur de $\int_a^b f(x) dx$?	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
Définition de $\int_{a}^{b} f(x) dx$?	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) \mathrm{d}x?$	

$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \ge 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abs- cisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) + g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)

$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Valeur de $\int_a^b f(x) dx$?	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Unité d'expression de la valeur de	
$\int_{a}^{b} f(x) dx?$ $k \int_{a}^{b} f(x) dx =$	
o u	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Inversion des bornes de l'intégrale :	
$\int_{b}^{a} f(x) \mathrm{d}x =$	
$\int_{b}^{a} f(x) dx =$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$	
est?	
$\int_{a}^{a} f(x) \mathrm{d}x =$	
Définition de $\int_a^b f(x) dx$?	
Énoncez l'inégalité de la moyenne	
Donnez la valeur moyenne μ de la fonction f	
sur [<i>a</i> , <i>b</i>]	

$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
Unité d'expression de la valeur de $\int_a^b f(x) dx?$	En unités d'aire (u.a.)
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} k f(x) \mathrm{d}x$
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Inversion des bornes de l'intégrale : $\int_{-a}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$
$\int_{b}^{a} f(x) dx =$ $\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abs- cisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
	Si f est une fonction continue sur $[a,b]$, et
Énoncez l'inégalité de la moyenne	si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$

$\int_{a}^{a} f(x) \mathrm{d}x =$	
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	
Donnez la valeur moyenne μ de la fonction f	
$\operatorname{sur}\left[a,b\right]$	
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) \mathrm{d}x$	
$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx =$	
Définition de $\int_a^b f(x) dx$?	
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à	
$\int_{a}^{b} g(x) dx$	
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	
Énoncez l'inégalité de la moyenne	
$k \int_{a}^{b} f(x) \mathrm{d}x =$	
Supposons $g(x) \ge f(x)$, exprimez (par les inté-	
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	
$\int_{a}^{b} k f(x) \mathrm{d}x =$	
Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$	
est?	
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	

	<u> </u>
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Donnez la valeur moyenne μ de la fonction f sur $[a, b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Définition de $\int_a^b f(x) dx$?	C'est l'aire sous la courbe entre l'axe des abscisses, la courbe représentative de f et les droites d'équation $x = a$ et $x = b$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
Que représente $\int_{a}^{b} g(x) - f(x) dx$?	C'est l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et de g
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} kf(x) \mathrm{d}x$
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
(Relation de Chasles) $\int_{a}^{b} f(x) dx =$	$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x$
$k \int_{a}^{b} f(x) dx =$ Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g $\int_{a}^{b} kf(x) dx =$ Par rapport à f , la fonction $\phi(x) = \int_{a}^{x} f(t) dt$ est?	$x \in [a,b], \ m \le f(x) \le M, \ \text{alors} \ m(b-a) \le \int_a^b f(x) \mathrm{d}x \le M(b-a)$ $\int_a^b kf(x) \mathrm{d}x$ $\int_a^b g(x) - f(x) \mathrm{d}x$ $k \int_a^b f(x) \mathrm{d}x$ L'unique primitive de f qui s'annule en a

Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?
est?
Supposons $g(x) \ge f(x)$, exprimez (par les inté-
grales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g
$\int_{a}^{b} k f(x) \mathrm{d}x =$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à
$\int_{a}^{b} g(x) dx$
$\int_{a}^{a} f(x) \mathrm{d}x =$
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à
$\int_{a}^{b} g(x) dx$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$
Valeur de $\int_a^b f(x) dx$?
Donnez la valeur moyenne μ de la fonction f
$\operatorname{sur}\left[a,b\right]$
Énoncez l'inégalité de la moyenne
$k \int_{a}^{b} f(x) \mathrm{d}x =$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \grave{a} 0$
Inversion des bornes de l'intégrale :
$\int_{b}^{a} f(x) \mathrm{d}x =$

$\int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) \mathrm{d}x$
Par rapport à f , la fonction $\phi(x) = \int_a^x f(t) dt$ est?	L'unique primitive de f qui s'annule en a
Supposons $g(x) \ge f(x)$, exprimez (par les intégrales) l'aire du domaine compris entre $x = a$, $x = b$ et les courbes représentatives de f et g	$\int_{a}^{b} g(x) - f(x) \mathrm{d}x$
$\int_{a}^{b} k f(x) \mathrm{d}x =$	$k \int_{a}^{b} f(x) \mathrm{d}x$
$\int_{a}^{b} f(x) \mathrm{d}x + \int_{a}^{b} g(x) \mathrm{d}x =$	$\int_{a}^{b} f(x) + g(x) \mathrm{d}x$
Si $f(x) \ge g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \ge \int_{a}^{b} g(x) \mathrm{d}x$
$\int_{a}^{a} f(x) \mathrm{d}x =$	0
Si $f(x) \le g(x)$, alors comparez $\int_a^b f(x) dx$ à $\int_a^b g(x) dx$	$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$
Si $f \le 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	$\int_{a}^{b} f(x) \mathrm{d}x \le 0$
Valeur de $\int_{a}^{b} f(x) dx$?	F(b) - F(a)
Donnez la valeur moyenne μ de la fonction f sur $[a,b]$	$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$
Énoncez l'inégalité de la moyenne	Si f est une fonction continue sur $[a,b]$, et si m et M sont des réels tels que pour tout $x \in [a,b], m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
$k \int_{a}^{b} f(x) \mathrm{d}x =$	$\int_{a}^{b} kf(x) \mathrm{d}x$
Si $f \ge 0$, alors comparez $\int_a^b f(x) dx \ a \ 0$	$\int_{a}^{b} f(x) \mathrm{d}x \ge 0$
Inversion des bornes de l'intégrale : $\int_{b}^{a} f(x) dx =$	$-\int_{a}^{b} f(x) \mathrm{d}x$